Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6195, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794071

ABSTRACT

Multivalent antigen display is a fast-growing area of interest toward broadly protective vaccines. Current nanoparticle-based vaccine candidates demonstrate the ability to confer antibody-mediated immunity against divergent strains of notably mutable viruses. In coronaviruses, this work is predominantly aimed at targeting conserved epitopes of the receptor binding domain. However, targeting conserved non-RBD epitopes could limit the potential for antigenic escape. To explore new potential targets, we engineered protein nanoparticles displaying coronavirus prefusion-stabilized spike (CoV_S-2P) trimers derived from MERS-CoV, SARS-CoV-1, SARS-CoV-2, hCoV-HKU1, and hCoV-OC43 and assessed their immunogenicity in female mice. Monotypic SARS-1 nanoparticles elicit cross-neutralizing antibodies against MERS-CoV and protect against MERS-CoV challenge. MERS and SARS nanoparticles elicit S1-focused antibodies, revealing a conserved site on the S N-terminal domain. Moreover, mosaic nanoparticles co-displaying distinct CoV_S-2P trimers elicit antibody responses to distant cross-group antigens and protect male and female mice against MERS-CoV challenge. Our findings will inform further efforts toward the development of pan-coronavirus vaccines.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Vaccines , Male , Female , Animals , Mice , Antibodies, Viral , Antibody Formation , Epitopes/metabolism , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing
2.
Res Sq ; 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36380759

ABSTRACT

Multivalent antigen display is a fast-growing area of interest towards broadly protective vaccines. Current nanoparticle-based vaccine candidates demonstrate the ability to confer antibody-mediated immunity against divergent strains of notably mutable viruses. In coronaviruses, this work is predominantly aimed at targeting conserved epitopes of the receptor-binding domain. However, targeting other conserved non-RBD epitopes could further limit the potential for antigenic escape. To further explore new potential targets, we engineered protein nanoparticles displaying CoV_S-2P trimers derived from MERS-CoV, SARS-CoV-1, SARS-CoV-2, hCoV-HKU1, and hCoV-OC43 and assessed their immunogenicity in mice. Monotypic SARS-1_S-2P nanoparticles elicited cross-neutralizing antibodies against MERS_S and protected against MERS-CoV challenge. MERS and SARS-I53_dn5 nanoparticles elicited S1-focused antibodies, revealing a conserved site on the NTD. Moreover, mosaic nanoparticles co-displaying distinct CoV_S-2P trimers elicited antibody responses to distant cross-group antigens while protecting against MERS challenge despite diminished valency of MERS_S-2P. Our findings will inform further efforts towards the development of pan-coronavirus vaccines.

3.
Vaccine ; 39(51): 7394-7400, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34815117

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a global pandemic. Safe and effective COVID-19 vaccines are now available, including mRNA-1273, which has shown 94% efficacy in prevention of symptomatic COVID-19 disease. However, the emergence of SARS-CoV-2 variants has led to concerns of viral escape from vaccine-induced immunity. Several variants have shown decreased susceptibility to neutralization by vaccine-induced immunity, most notably B.1.351 (Beta), although the overall impact on vaccine efficacy remains to be determined. Here, we present the initial evaluation in mice of 2 updated mRNA vaccines designed to target SARS-CoV-2 variants: (1) monovalent mRNA-1273.351 encodes for the spike protein found in B.1.351 and (2) mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 and mRNA-1273.351. Both vaccines were evaluated as a 2-dose primary series in mice; mRNA-1273.351 was also evaluated as a booster dose in animals previously vaccinated with mRNA-1273. The results demonstrated that a primary vaccination series of mRNA-1273.351 was effective at increasing neutralizing antibody titers against B.1.351, while mRNA-1273.211 was effective at providing broad cross-variant neutralization. A third (booster) dose of mRNA-1273.351 significantly increased both wild-type and B.1.351-specific neutralization titers. Both mRNA-1273.351 and mRNA-1273.211 are being evaluated in pre-clinical challenge and clinical studies.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Viral , Humans , Mice , SARS-CoV-2 , Vaccination , Vaccine Efficacy , Vaccines, Synthetic , mRNA Vaccines
4.
bioRxiv ; 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-33880468

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a global pandemic. Safe and effective COVID-19 vaccines are now available, including mRNA-1273, which has shown 94% efficacy in prevention of symptomatic COVID-19 disease. However, the emergence of SARS-CoV-2 variants has led to concerns of viral escape from vaccine-induced immunity. Several variants have shown decreased susceptibility to neutralization by vaccine-induced immunity, most notably B.1.351 (Beta), although the overall impact on vaccine efficacy remains to be determined. Here, we present the initial evaluation in mice of 2 updated mRNA vaccines designed to target SARS-CoV-2 variants: (1) monovalent mRNA-1273.351 encodes for the spike protein found in B.1.351 and (2) mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 and mRNA-1273.351. Both vaccines were evaluated as a 2-dose primary series in mice; mRNA-1273.351 was also evaluated as a booster dose in animals previously vaccinated with mRNA-1273. The results demonstrated that a primary vaccination series of mRNA-1273.351 was effective at increasing neutralizing antibody titers against B.1.351, while mRNA-1273.211 was effective at providing broad cross-variant neutralization. A third (booster) dose of mRNA-1273.351 significantly increased both wild-type and B.1.351-specific neutralization titers. Both mRNA-1273.351 and mRNA-1273.211 are being evaluated in pre-clinical challenge and clinical studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...